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Helix-coil transition in homopolypeptides under stretching

M. N. Tamashiro* and P. Pincus†
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~Received 2 October 2000; published 26 January 2001!

We consider the effect of an external applied force on thea-helix–coil transition of a single-stranded
homopolypeptide chain. An annealed scenario is assumed, where the building amino acid monomers may
interconvert between random-coiled and ordereda-helical configurations. By exact evaluation of the partition
function of the freely jointed chain with helix-coil internal degrees of freedom in the thermodynamic limit, we
obtain the result that the stress-strain characteristic has an asymmetrical sigmoid shape with a prominent
pseudoplateau. Because of the one-dimensional nature of this system, fluctuations dominate over the mean-
field approximation, which incorrectly predicts a second-order phase transition.
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Recent developments of experimental techniques en
us to manipulate individual macromolecules@1#. New force-
measurement apparatuses, which include magnetic and
cal tweezers, microneedles, micropipets, flexible atom
force microscope cantilevers, and fluorescently labeled d
in an elongational flow, have been applied to measure
forces required to deform~by stretching, shearing, or twist
ing! and unfold single molecules. Experiments have be
carried out on several distinct systems, including DN
@2–8#, the proteins titin @9–13# and tenascin@14#, the
polysaccharides dextran@15# and xanthan@16#, the water-
soluble polymers PEG@17# ~polyethylene glycol! and PVA
@18# ~polyvinyl alcohol!, single chromatin fibers@19#, and
small peptide chains@20#. Due to the rich structural com
plexity and wide diversity of binding mechanisms involve
the theoretical interpretation of the experimental results r
resents a challenging task. Most of the theoretical approa
to analyzing the experimental data are based on generic p
mer models of homogeneous chains stretched in their
tropic regimes, like, e.g., the freely jointed@21,22# or worm-
like @23,24# chain models. Since real biopolymers usua
have hierarchical substructures, it is important to study
interplay between chain flexibility and structural intracha
degrees of freedom. Theoretical investigations in some s
cific cases, like, e.g.,B/S-DNA @5,25#, DNA-protein com-
plexes@26,27#, proteins@28,29#, collapsed flexible globular
polymers in poor solvents@30#, weakly charged polyelectro
lyte necklaces @31,32#, polyampholytic necklaces@33#,
macroion-polyelectrolyte complexes@34#, polysoaps@35#,
and homopolypeptides@36#, present plateaus or pseudopl
teaus, reminiscent of phase coexistence between diffe
conformations, or abrupt stepwise behavior, related to
crete unraveling of internal structural blocks.

Beside recent experimental progress in single-molec
nanomanipulation, thea-helix–coil transition in polypep-
tides has been one of the well-investigated conformatio
transitions in biomolecules, from the experimental as wel
from the theoretical point of view@37–40#. As response to
variations of environmental conditions, like temperatu
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pH, or solvent, polypeptides may undergo dramatic confi
rational changes from randomly coiled forms to rodlike o
dered structures associated witha helices. Their stability de-
pends mainly on intrachain forces, e.g., dipole-dipole van
Waals interactions and the formation of hydrogen bonds
tween amino acid monomers along the polypeptide ch
Similar conformational transitions, like, e.g., protein foldin
from random denatured to compact native forms, inde
have vital biological implications. In fact, the formation o
ordereda helices is ubiquitous in the secondary structure
proteins @41#, which may be considered inhomogeneous
charged heteropolypeptides. The particular folded conform
tion of a native protein is the result of the interactions of t
specific sequence of amino acids that comprise the polyp
tide chain@42,43#. Another example is the replication an
RNA transcription of DNA, where the local disruption of th
double-helix structure of the DNA is necessary in order t
these fundamental genetic processes take place. Althoug
microscopic origins of protein folding-unfolding are mo
complicated than helix-coil transitions in polypeptides, t
study of the latter may shed some light on the understand
of the stabilizing and destabilizing mechanisms of the
dered states that may be common to both. In view of toda
facile synthesis of block copolypeptides with well-defin
amino acid sequences@44# and the single-molecule manipu
lations described above, it is interesting to consider the ef
of an external stress on the helix-coil transition of a polype
tide chain. This analysis allows us to extract structural inf
mation from single-molecule force measurements and
theoretical predictions on the stress-induceda-helix–coil
transition of polypeptides.

We consider a single-stranded homopolypeptide ch
that may undergo ana-helix–coil transition. The chain is
comprised ofN amino acid monomers~residues!, which are
linked to its neighbors by covalent peptide bonds and m
interconvert between coiled~c! anda-helical ~h! conforma-
tions. For each monomeri 51, . . . ,N is assigned a state
variablem i , which takes the valuem i50 for the coiled or
m i51 for the helical state. Therefore, there are altogetherN

distinct allowed conformational states for the chain. T
unstretched-chain equilibrium properties are the subject
vast literature@37–40#. Although in a real polypeptide chain
the hydrogen bonds are formed between the NH~amide!
©2001 The American Physical Society09-1
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M. N. TAMASHIRO AND P. PINCUS PHYSICAL REVIEW E63 021909
group i and the CO~carboxyl! group i 14, we will use the
simpler approach adopted by Zimm and Bragg@45#, in which
the hydrogen bonding takes place between two adja
monomers. In this case, in the absence of any external for
the partition function is constructed assigning different s
tistical weights for the four possible configurations of a giv
residue relative to its predecessor. These configurations
cc, hc, ch, andhh, whose corresponding weights are 1, 1,ss,
ands, respectively. The nucleation constants and the helical
propagation parameters govern the behavior of the system
They represent the Boltzmann weights5e22Dw/kBT for the
formation of a helical sequence and the statistical weighs
5e2D f /kBT for a residue in a helical state~relative to the
coiled!. 2Dw represents the interfacial energy associa
with a helical domain andD f corresponds to the change
the free energy due to the intrachain hydrogen bonding
the loss of configurational entropy. The partition functi
can be readily obtained using the matrix formulation
Zimm and Bragg@45#,

Z05(
$m i %

)
i 51

N

s~12m i !m i 11sm i 115Tr MN5l0
N1l1

N , ~1!

which is written in terms of the transfer matrixM5(1
1

s
ss) of

elementsMm im i 11
5s (12m i )m i 11sm i 11 and eigenvalues

l0,15
1
2 @11s6A~12s!214ss#. ~2!

In order to identify the partition function with the trace o
MN, we assumed periodic boundary conditions,mN11[m1 .
Any errors incurred by chain-end effects will vanish in t
limit of long chains. Since the system is one dimensional a
the interactions are short ranged, even at the infinite-ch
limit ( N→`) a true thermodynamical phase transition o
curs only fors50, when the transfer matrix is not positiv
definite and the Perron-Frobenius theorem does not a
@46#. The sharpness of the crossover region is controlled
s, whereass is related to the temperature. However, the
have been indications that the polypeptide-chain adsorp
to an interface@47# or the introduction of long-ranged Cou
lomb interactions@48,49# may promote the helix-coil transi
tion into a true critical phenomenon, even for finites.

The effect of an external applied force on the helix-c
transition is analyzed using a simple model first introduc
by Nagai@50#. In fact, a mean-field treatment of this mod
was previously performed by Buhot and Halperin@36#. As
discussed in Appendix B, the present work represents
extension of their calculation, in which the partition functio
is evaluated exactly and fluctuations are automatically ta
into account. Each uninterrupted helical sequence contai
n residues is replaced by a rod of lengthnlhelix , wherel helix
is the projection along thea-helix axis of the distance pe
residue. On the other hand, the coiled regions are replace
a freely jointed chain@21,22# with segments of bond lengt
l coil . The ratio between the helical and coiled-bond lengt
g5 l helix / l coil , is restricted to the range 0 to 1. The effect
the external applied forceF is taken into account by addin
to the Hamiltonian an elastic contribution2F•(rN2r0)5
2F•( i 51

N (r i2r i 21)52F( i 51
N l i cosqi , where r i 21 repre-
02190
nt
es,
-

re

d

d

f

d
in
-

ly
y

n

l
d

n

n
ng

by

,

sents the three-dimensional position vector of the star
point of thei th residue@or the end of the (i 21)th residue#,
l i5 l coil for the coiled state (m i50), l i5 l helix for the helical
state (m i51), andq i is the angle between thei th residue
and thez axis, the direction of the stretching forceF. Mono-
mer units in a coiled conformation are free to rotate indep
dently over all angles, while a residue in a helical block
restricted to coherently rotate with the other segments
compose the same helical region. However, we will assu
that there are no correlations between distinct helical s
tions. Orientational correlations between successive he
sequences may be relevant in the presence of short co
sequences. Under these conditions, the partition functio
the presence of external forces can be formally written a

ZF5)
k51

N F 1

4p E
0

2p

dfkE
21

1

djkG
3(

$m i %
)
i 51

N

J i~V i ,V i 11!s~12m i !m i 11sm i 11, ~3!

where V i5$f i ,j i5cosqi%, and the force-dependen
function J i(V i ,V i 11)5ewj i(12m i)1egwj im i(12m i 11)
14pegwj id(V i2V i 11)m im i 11 , with d the Dirac delta func-
tion. w5Fl coil /kBT, and gw5Fl helix /kBT are the dimen-
sionless elastic energies associated with the coiled and
cal residues, respectively. Although it is possible to write
formal expression of the partition function in terms of a mu
tidimensional integral of a product of transfer matrices, su
a form would be useless due to the coupling introduced
the Diracd functions. Therefore we must resort to a comb
natorial approach for the evaluation ofZF . In addition to the
unstretched-chain statistical weights, we have an elastic
tor S(w)[(1/4p)*0

2pdf*21
1 dj ewj5sinhw/w for each

coiled residue and anS(ngw) factor for each uninterrupted
helical sequence containingn residues. There are many de
generacies in the 2N distinct terms of the partition function
which can be rewritten as a sum,

ZF5sNS~Ngw!1SN~w!(
k

Ck )
n51

N21 FssnS~ngw!

Sn~w! Gkn

.

~4!

The first term of Eq.~4! represents the statistical weight o
the pure-helix configuration, while the weight correspondi
to the fully coiled state is given by the termk50 of the sum.
The sum overk[(k1 ,...,kN21) is restricted to all non-
negative integer values ofkn (n51, . . . ,N21) subject to
the constraint

(
n51

N21

~n11!kn<N, ~5!

and
9-2
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HELIX-COIL TRANSITION IN HOMOPOLYPEPTIDES . . . PHYSICAL REVIEW E 63 021909
Ck5

NS N212 (
n51

N21

nknD !

S N2 (
n51

N21

~n11!knD ! )
n51

N21

kn!

~6!

is the number of distinct possible configurations contain
kn uninterrupted helical regions of sizen, n51, . . . ,N21. In
fact, the constraint~5! is automatically taken into account b
the combinatorial factor Ck , because 1/@N2(n51

N21(n
11)kn#! 50 for (n51

N21(n11)kn.N.
For the fully cooperative case (s50), only the two pure-

state terms of the partition function survive,ZF(s50)
5sNS(Ngw)1SN(w). Two physical quantities may be ob
tained by differentiation of the logarithm of the partitio
function, namely, the fraction of monomers in helical r
gions, uN5(1/N)( i 51

N ^m i&5(1/N)d(ln ZF)/d(ln s), where
^¯& denotes an average in the stress ensemble define
ZF , and the normalized dimensionless average length of
chain along the force direction,r 5(1/Nlcoil)( i 51

N ^ l i cosqi&
5(1/N)d(ln ZF)/dw, which is limited to the range 0 to 1. In
the limit of long chains,N→`, the transition becomes dis
continuous,

u5 lim
N→`

uN5 lim
N→`

F11
SN~w!

sNS~Ngw!G
21

5H 0 for s,scrit

1 for s.scrit ,
~7!

r 5 lim
N→`

@~12uN!L~w!1uNgL~Ngw!#

5HL~w! for s,scrit

g for s.scrit,
~8!

whereL(w)5cothw21/w is the Langevin function, taking
place at the critical value

FIG. 1. Phase diagram on thes3w plane for the fully coopera-
tive case (s50) in the infinite-chain limit (N→`) and for several
values of the ratio between the helical and coiled bond lengthsg.
Above the continuous lines, which represent the critical value gi
by Eq. ~9!, we have an ordered rodlikea-helix configuration,
whereas for smaller values ofs the chain is in a coiled conforma
tion.
02190
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For finite values ofN, the crossover region has a finite widt
which is broader for smaller values ofN. In Fig. 1 the
s3w phase diagram for the fully cooperative case (s50) in
the infinite-chain limitN→` is presented for some values o
g. For any value ofg,1, we obtain two transitions for a
certain range of the parameters. Initially we observe a stress
induced stiffening of the chain, because the alignment
coiled segments along the force direction favors the form
tion of the ordereda helix. The second transition, occurrin
at strong deformations, involves the rupture of the stabiliz
hydrogen bonds of thea helix. Only for g51 is the critical
value~9! a monotonically decreasing function of the stressw,
and the second hydrogen-bond breaking transition does
occur. The fully cooperatives50 force-elongation profile,
given by Eq.~8!, is presented in Figs. 2 and 3, together w
the profiles for finites. It is worth mentioning that similar

n

FIG. 2. Force-extension profiles in the infinite-chain limit (N
→`), for g51, s50.8, and several values of the cooperativ
parameters. The plateau obtained resembles early experime
measurements of the melting of an ideal homogeneous fibril c
sisting of a parallel bundle of polypeptide chains@51#. To allow a
better view of the crossover region for very small values ofs, the
inset displays a magnification of the plateau neighborhood. No
that the finite-s force-extension profiles do not cross thes50 pla-
teau at its middle point, in contrast to a previous calculation
Buhot and Halperin@36# for the case of an external impose
strain—see the discussion in Appendix B.

FIG. 3. Force-extension profiles in the infinite-chain limit (N
→`), for g51/2, s50.8, and several values of the cooperativ
parameters. To allow a better view of the crossover region for ve
small values ofs, the inset displays a magnification of the plate
vicinity, showing that the finite-s sigmoid profiles are not sym-
metrical about the crossing point (r p ,wp).
9-3
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force-length behavior has been observed in early exp
ments on the stretching of a parallel bundle of polypept
chains@51#.

For the finite cooperative case (sÞ0), a closed expres
sion for the partition function can be obtained only in t
infinite-chain limit (N→`)—see the derivation in Appendi
te

io

th
e-
th

02190
ri-
e
A. The equations of state, the Gibbs free energy per resid
g52kBT limN→`(1/N)ln ZF , and the force-extension rela
tion are written in terms of the variablesx[12u andy[1
2u2h, where the mean fraction of helical monomer un
following coiled segments ish[ limN→`(1/N)( i 51

N ^(1
2m i)m i 11&5 limN→`(1/N)d(ln ZF)/d(ln s),
x5X~x,y,w!512
sxy2sS~w!S~gw!

@xS~w!2ysegw#@xS~w!2yse2gw#
, ~10!

y5Y~x,y,w!5x1
sy

2gw
lnF xS~w!2ysegw

xS~w!2yse2gwG , ~11!

2
g

kBT
5H ln S~w!1 ln

x

y
for s,scrit

x

y

gw1 ln s for s.scrit

x

y
,

~12!

r 5H xL~w!1
y2x

w
1

1

2w H @x2S2~w!2y2s2#~12x!

xysS~w!S~gw!
2syJ for s,scrit

x

y

g for s.scrit

x

y
,

~13!
ntal
-

a

in-
s-
wherescrit is the unstretched critical propagation parame
given by Eq.~9!.

In Figs. 2 and 3 we present some typical force-extens
profiles for finite values of the nucleation parameters. Note
the steep increase of the force atr 5g related to the stiffen-
ing of the chain and the asymmetrical sigmoid shape in
vicinity of the s50 plateau. In Appendix B these exact r
sults are compared with a mean-field approximation for
partition function@36#, which incorrectly leads to a~continu-
ous! second-order phase transition for finites.

The asymptotic behavior abouts50 is given by a slowly
convergent series, because the expansion parametere ~de-
fined below! has a logarithmic dependence ons. In leading
order, we may show that the plateau crossings~for both low-
and high-force transitions when 0,g,1! occur at

lim
s→0

xp'11c~e!, ~14!

lim
s→0

yp'11c~e!1
s

2egwp
, ~15!

lim
s→0

r p'L~wp!1@L~wp!2g#c~e!1
s

2egwp
2 , ~16!
r,

n

e

e

e2152WF2gwp~12e22gwp!

es G , ~17!

c~e!5
122e2A124e

2e
5e12e215e3114e4142e5

1132e61O~e7!, ~18!

where the stress value at thes50 plateau,wp , is given by
the solution of Eq.~9! for a givens, andW(z) is the princi-
pal solution of the LambertW function @52,53#, which is
defined to be the multivalued inverse of the transcende
equationz5WeW. Notice that, as we approach the fully co
operative limit (s→0), we obtaine→0, s/e→0 and the
plateau crossingr p tends to the edge valueL(wp) corre-
sponding to the pure coiled-state length, giving rise to
highly asymmetric sigmoid form for smalls.

We may expand the force-extension relation in the vic
ity of the s50 plateau to obtain the asymptotic linear ela
ticity law

w5wp1~r 2r p!
dw

dr U
w5wp

1O@~r 2r p!2#, ~19!

where the slope, in leading order abouts→0, is given by
9-4
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lim
s→0

dw

dr U
w5wp

5
sD1

e2D21sD3
, ~20!

with coefficients D15@11c(e)#5$12e@11c(e)#%2, D2
52gwp@11c(e)#8@L(wp)2g#2, and D35122L(wp)/wp
2L2(wp). Since s/e2→0 as s→0, the asymptotic slope
~20! vanishes logarithmically as sW2(1/s)'s@ ln s
1ln u ln su#2, which is distinct from the mean-field power-la
dependences1/2 given by Eq.~B11!.

In Appendix B we show that a previous calculation
Buhot and Halperin@36# corresponds indeed to a mean-fie
approximation for the partition function. However, w
should mention that a mean-field approach is inappropr
for this system, because it is not possible to perform a p
turbation theory about the mean-field solution. Due to
low dimensionality of the system, this is not at all surprisin
This impossibility is due to the fact that the higher-ord
moments of the block-size distribution^kn

n& scale likeNn21.
Indeed, in the infinite-chain limit, the ratio

lim
N→`

1

Nn21 ^kn
n&5 lim

N→`

1

Nn (
n51

N21

kn
n

5Fs~12u2h!

2gw Gn

(
j 50

n

~21! j S n
j D

3Li nH F ~12u2h!segw

~12u!S~w! Gn

e22 j gwJ
~21!

is finite and can be expressed in terms of thenth polyloga-
rithmic function @54# Li n(z)5( j 51

` zj / j n.
In summary, we have provided an exact treatment of

stress-induceda-helix–coil transition in homopolypeptides
in which the elastic degrees of freedom are analyzed in
framework of the freely jointed chain model. This statistic
mechanical standpoint, besides being straightforward,
the advantage of enabling an accurate control over the
proximations. The force-extension profiles obtained
qualitatively distinct from elasticity laws derived in th
mean-field approximation@36#—see the discussion in Ap
pendix B. In particular, the sigmoid form in the crossov
region has a highly asymmetric form and its asympto
slope vanishes logarithmically, proportional tos@ ln s
1ln u ln su#2, in contrast to the mean-field power-law predi
02190
te
r-
e
.
r

e

e
-
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p-
e

r
c

tion proportional tos1/2. Also, the mean-field approach pre
dicts a second-order phase transition, which is prohibited
this one-dimensional system for finites. Furthermore, we
also showed that it is not possible to develop a perturba
theory about the mean-field solution, because fluctuati
play a fundamental role and cannot be disregarded.

The authors acknowledge fruitful discussions with A
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cional de Desenvolvimento Cientı´fico e Tecnolo´gico. This
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of the National Science Foundation under Grant Nos. DM
96-32716 and DMR-96-24091.

APPENDIX A: EXACT PARTITION FUNCTION IN THE
INFINITE-CHAIN LIMIT „N\`…

We want to maximize the general termzk of the partition
function ~4!, ZF5sNS(Ngw)1(kzk, or more conveniently
its logarithm,

lim
N→`

ln zk5N ln S~w!111 ln N

1S N212 (
n51

N21

nkND lnS N212 (
n51

N21

nknD
2FN2 (

n51

N21

~n11!knG lnFN2 (
n51

N21

~n11!knG
2 (

n51

N21

kn ln kn1 (
n51

N21

kn lnFssnS~ngw!

Sn~w! G , ~A1!

where the Stirling approximation lnz!'z ln z2z was em-
ployed to obtain Eq.~A1!. The stationary-point equation
] ln zk/]kn50 yield the distribution

kn5

S N2 (
n51

N21

~n11!knD n11

ssnS~ngw!

S N212 (
n51

N21

nknD n

Sn~w!

, ~A2!

which, in turn, leads to the self-consistent equations for
intensive self-averaged variables,
u[^nkn&5 lim
N→`

1

N (
n51

N21

nkn5 lim
N→`

1

N

d~ ln ZF!

d~ ln s!
5

s~12u!~12u2h!2sS~w!S~gw!

@~12u!S~w!2~12u2h!segw#@~12u!S~w!2~12u2h!se2gw#
,

~A3!

h[^kn&5 lim
N→`

1

N (
n51

N21

kn5 lim
N→`

1

N

d~ ln ZF!

d~ ln s!
5

s~12u2h!

2gw
lnF ~12u!S~w!2~12u2h!se2gw

~12u!S~w!2~12u2h!segw G . ~A4!
9-5
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M. N. TAMASHIRO AND P. PINCUS PHYSICAL REVIEW E63 021909
In the unstretched-chain limit (w→0), we regain, as ex
pected, the unperturbed-chain Zimm-Bragg results@45# u0
5(l021)/(2l0212s), h05(l021)(l02s)/@l0(2l021
2s)#, l05(12u0)/(12u02h0), where l0 is the largest
eigenvalue of the unstretched-chain transfer matrixM, given
by Eq. ~2!.

To perform the numerical calculations for the stretch
chain (wÞ0), it is convenient to introduce the variablesx
[12u and y[12u2h, in terms of which the self-
consistent equations and the Gibbs free energy per res
g52 limN→`(kBT/N)ln ZF , can be rewritten as Eqs.~10!–
~12!. The calculation of the average chain length alo
the force direction, r 52(1/kBT)dg/dwus,s5L(w)
1(1/x)dx/dw2(1/y)dy/dw for s,scrit x/y, or r 5g for s
.scrit x/y, requires the derivatives of the parametric form
dx/dw5@]X/]w1](X,Y)/](y,w)#/D, dy/dw5@]Y/]w
2](X,Y)/](x,w)#/D, D512]X/]x2]Y/]y1](X,Y)/
](x,y). After tedious and lengthy algebraic manipulation
we are led to the force-extension relation~13!.

APPENDIX B: MEAN-FIELD APPROXIMATION
FOR THE PARTITION FUNCTION

We now show that the approach followed by Buhot a
Halperin@36# corresponds indeed to a mean-field approxim
tion for the partition function. Two contributions to the ge
eral termzk of the partition function~A1! can not be written
in terms of the intensive variablesu andh. In a mean-field
approach, they are approximated by

(
n51

N21

kn ln kn→Nh ln~Nh!, ~B1!

(
n51

N21

kn ln S~ngw!→Nh ln SS ugw

w D . ~B2!

Note that, by assuming a mean-field approximation for
size of the helical blocks, we need to add to the entropic te
a contribution (1/N)ln(hN

uN) to account for their polydisper
sity. The mean-field Gibbs free energy per monomer,g̃(w)
5u2Tsmix1gelast(w), is split into three terms,

u

kBT
52h ln s2u ln s, ~B3!

2
smix

kB
5~u2h!ln

u2h

u
1h ln

h

u
1h ln

h

12u

1~12u2h!ln
12u2h

12u
, ~B4!

gelast

kBT
52~12u!ln S~w!2h ln SS ugw

h D , ~B5!

where u2Tsmix corresponds to the unstretched-chain fr
energy~u is the internal energy andsmix is the mixing en-
tropy! andgelast(w) represents the elastic free energy in t
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d

ue,

g

,

,

-

e
m

e

fixed-force~stress! ensemble. Minimization of the mean-fiel
Gibbs free energyg̃ with respect tou and h leads to the
mean-field equations of state,

~12u!~u2h!S~w!5us~12u2h!exp@gwL~ugw/h!#,
~B6!

h2 exp@~ugw/h!L~ugw/h!#

5s~u2h!~12u2h!S~ugw/h!. ~B7!

In fact, the stress-ensemble~fixed-force! Gibbs elastic free
energygelast corresponds to the Legendre transform of t
strain-ensemble~fixed-length! Helmholtz elastic free energy
f elast considered by Buhot and Halperin@36#, f elast(r )
5gelast@w(r )#1kBTrw(r ). However, because the elasti
ity law r 52(1/kBT)dg̃/dwus,s52(1/kBT)]gelast/]w5(1
2u)L(w)1ugL(ugw/h) cannot, in general, be analyticall
inverted to givew5w(r ), it is not possible to perform an
exact analysis of the mean-field equations in the strain
semble. In particular, we will show later that, contrary
Buhot and Halperin’s calculations, the mean-field forc
extension profiles do not have an inflection point at t
middle point of the plateau. At this point we should rema
that, although Buhot and Halperin obtained their plate
within the smix50 approximation, this assumption becom
exactin thes→0 limit, as can be seen by taking this limit i
the mean-field equations of state. Therefore, thesmix50 pla-
teau obtained by Buhot and Halperin, apart from the we
force expansion, corresponds to the exacts50 plateau. In

particular, their plateau forcew̃p'323A11 2
3 ln s can be

obtained by a second-order expansion of the critical pro
gation parameters in the fully cooperative (s→0) limit, Eq.
~9!.

FIG. 4. Comparison between the exact and the mean-field fo
extension profiles in the infinite-chain limit (N→`), for g51, s
50.8, ands51021. We chose a large value ofs to allow a better
comparison between the two approaches; the same feature
present for very small values ofs. We indicated in the figure the
exact (r 5r p) and the mean-field (r 5 r̃ p) plateau crossings, the
asymptotics→0 crossing valueL(wp), the plateau forcewp , and
the mean-field critical forcew0 . The mean-field approximation pre
dicts a second-order phase transition atw5w0 between a partially
and a pure helical state. The partition-function exact treatment le
to a smooth crossover between these two states and there is no
thermodynamical phase transition. The smooth crossover is rel
to the steep increase in the force close tor 5g.
9-6
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Unlike the strain ensemble, in the stress ensemble
possible to perform an exact analysis of the mean-field eq
tions. In particular, one may show that the crossings with
s50 plateaus occur at

lim
s→0

up'
Aẽ

2
, ~B8!

lim
s→0

hp'
ẽ

2
, ~B9!

lim
s→0

r̃ p'L~wp!1@g2L~wp!#
Aẽ

2
, ~B10!

where the mean-field expansion parameterẽ[es/(gwp).
An analogous asymptotic linear elasticity law like~19! can
be obtained at the mean-field level, replacingr p by r̃ p ,
where the mean-field slope, in leading order abouts→0, is
given by

lim
s→0

dw

dr U
w5wp

5
2Aẽ

@g2L~wp!#2 . ~B11!

This power-law dependence (s1/2) of the mean-field slope is
in contrast with the logarithmically vanishing slope~20! pro-
portional tos@ ln s1ln u ln su#2.

A point overlooked by Buhot and Halperin@36# is that the
mean-field approximation incorrectly predicts a~continuous!
second-order phase transition for finites, which is prohibited
for this one-dimensional system@46#. This can be seen in
Fig. 4, where the mean-field and the exact partition-funct
profiles are compared. The mean-field force profile me
r 5g with vanishing slope ~in the s→0 limit!
.

nc

nc

.

nd

k-

ns

.

E
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lims→0 dw/druw5w0
}s2, at a critical forcew0 satisfying ex-

actly ~for all values ofs! the condition

s5e2gw0S~w0!S 11
es

2gw0
D . ~B12!

In thes→0 limit, w0→wp . A noteworthy feature is that the
mean-field force-extension profile does not have an inflec
point, its derivative forr ,g being a monotonically decreas
ing function of the reduced lengthr. This is in contrast with
the exact partition-function result, which predicts a steep
crease in the force close tor 5g. In Fig. 5 we present the
mean-fields3w phase diagram for finite cooperativity (s
Þ0). For a given external forcew, thes50 first-order~dis-
continuous! transition is shifted to higher values ofs and
becomes second order~continuous!.

FIG. 5. Mean-fields3w phase diagram in the infinite-chai
limit ( N→`), for g51 and 1/2,s50.8, and finite cooperativity
(sÞ0). These curves, for finites, correspond to the boundaryw0

of the helical region, given by Eq.~B12!, and represent the loci o
the ~continuous! second-order phase transition. For a fixed exter
force w, the transition is shifted to higher values ofs.
.
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