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Helix-coil transition in homopolypeptides under stretching
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We consider the effect of an external applied force on dhleelix—coil transition of a single-stranded
homopolypeptide chain. An annealed scenario is assumed, where the building amino acid monomers may
interconvert between random-coiled and ordeseltelical configurations. By exact evaluation of the partition
function of the freely jointed chain with helix-coil internal degrees of freedom in the thermodynamic limit, we
obtain the result that the stress-strain characteristic has an asymmetrical sigmoid shape with a prominent
pseudoplateau. Because of the one-dimensional nature of this system, fluctuations dominate over the mean-
field approximation, which incorrectly predicts a second-order phase transition.
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Recent developments of experimental techniques enabligH, or solvent, polypeptides may undergo dramatic configu-
us to manipulate individual macromoleculdg. New force-  rational changes from randomly coiled forms to rodlike or-
measurement apparatuses, which include magnetic and optlered structures associated witlhelices. Their stability de-
cal tweezers, microneedles, micropipets, flexible atomicpends mainly on intrachain forces, e.g., dipole-dipole van der
force microscope cantilevers, and fluorescently labeled dye#/aals interactions and the formation of hydrogen bonds be-
in an elongational flow, have been applied to measure theveen amino acid monomers along the polypeptide chain.
forces required to deforrfby stretching, shearing, or twist- Similar conformational transitions, like, e.g., protein folding
ing) and unfold single molecules. Experiments have beerfrom random denatured to compact native forms, indeed
carried out on several distinct systems, including DNAhave vital biological implications. In fact, the formation of
[2-8], the proteins titin[9-13] and tenascin[14], the ordereda helices is ubiquitous in the secondary structure of
polysaccharides dextral5] and xanthar{16], the water- proteins[41], which may be considered inhomogeneously
soluble polymers PEGL7] (polyethylene glycdland PVA  charged heteropolypeptides. The particular folded conforma-
[18] (polyvinyl alcoho), single chromatin fiber§19], and tion of a native protein is the result of the interactions of the
small peptide chain$§20]. Due to the rich structural com- specific sequence of amino acids that comprise the polypep-
plexity and wide diversity of binding mechanisms involved, tide chain[42,43. Another example is the replication and
the theoretical interpretation of the experimental results repRNA transcription of DNA, where the local disruption of the
resents a challenging task. Most of the theoretical approache®uble-helix structure of the DNA is necessary in order that
to analyzing the experimental data are based on generic polyhese fundamental genetic processes take place. Although the
mer models of homogeneous chains stretched in their emmicroscopic origins of protein folding-unfolding are more
tropic regimes, like, e.g., the freely joint¢al,22 or worm-  complicated than helix-coil transitions in polypeptides, the
like [23,24] chain models. Since real biopolymers usually study of the latter may shed some light on the understanding
have hierarchical substructures, it is important to study thef the stabilizing and destabilizing mechanisms of the or-
interplay between chain flexibility and structural intrachaindered states that may be common to both. In view of today’s
degrees of freedom. Theoretical investigations in some spdacile synthesis of block copolypeptides with well-defined
cific cases, like, e.gB/S-DNA [5,25], DNA-protein com- amino acid sequencg44] and the single-molecule manipu-
plexes[26,27], proteins[28,29, collapsed flexible globular lations described above, it is interesting to consider the effect
polymers in poor solvents30], weakly charged polyelectro- of an external stress on the helix-coil transition of a polypep-
lyte necklaces[31,32, polyampholytic necklaceg33], tide chain. This analysis allows us to extract structural infor-
macroion-polyelectrolyte complexds4]|, polysoaps[35], mation from single-molecule force measurements and test
and homopolypeptideg36], present plateaus or pseudopla-theoretical predictions on the stress-inducedelix—coil
teaus, reminiscent of phase coexistence between differetriansition of polypeptides.
conformations, or abrupt stepwise behavior, related to dis- We consider a single-stranded homopolypeptide chain
crete unraveling of internal structural blocks. that may undergo am-helix—coil transition. The chain is

Beside recent experimental progress in single-moleculeomprised ofN amino acid monomergesidueg which are
nanomanipulation, thex-helix—coil transition in polypep- linked to its neighbors by covalent peptide bonds and may
tides has been one of the well-investigated conformationahterconvert between coile@) and a-helical (h) conforma-
transitions in biomolecules, from the experimental as well agions. For each monomar=1, ... N is assigned a state
from the theoretical point of vief37—-40. As response to variable u;, which takes the valug,;=0 for the coiled or
variations of environmental conditions, like temperature,u;=1 for the helical state. Therefore, there are altogetier 2

distinct allowed conformational states for the chain. The

unstretched-chain equilibrium properties are the subject of a
*Electronic address: mtamash@mrl.ucsb.edu vast literaturd 37—4Q. Although in a real polypeptide chain
TElectronic address: fyl@mrl.ucsb.edu the hydrogen bonds are formed between the (dirhide
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groupi and the CO(carboxy) groupi+4, we will use the sents the three-dimensional position vector of the starting
simpler approach adopted by Zimm and Brgd§|, in which  point of theith residugor the end of thei(— 1)th residug,

the hydrogen bonding takes place between two adjacent=I., for the coiled state 4;=0), |; =1y for the helical
monomers. In this case, in the absence of any external forcestate ;=1), and; is the angle between thi¢h residue

the partition function is constructed assigning different sta-and thez axis, the direction of the stretching forée Mono-
tistical weights for the four possible configurations of a givenmer units in a coiled conformation are free to rotate indepen-
residue relative to its predecessor. These configurations adently over all angles, while a residue in a helical block is
cc, he, chandhh, whose corresponding weights are 1¢7%, restricted to coherently rotate with the other segments that
ands, respectively. The nucleation constanand the helical compose the same helical region. However, we will assume
propagation parametargovern the behavior of the system. that there are no correlations between distinct helical sec-
They represent the Boltzmann weight=e?"/keT for the  tions. Orientational correlations between successive helical
formation of a helical sequence and the statistical wegght sequences may be relevant in the presence of short coiled
=e Ak for a residue in a helical stat@elative to the sequences. Under these conditions, the partition function in
coiled. 2Aw represents the interfacial energy associatedhe presence of external forces can be formally written as
with a helical domain andf corresponds to the change in

the free energy due to the intrachain hydrogen bonding and N
the loss of configurational entropy. The partition function 7 =H if”d(b fl d¢
can be readily obtained using the matrix formulation of P |am o K)ok
Zimm and Bragd 45], N
N x> 11 Ei(Q), Qi) ot #ikinastia,(3)
20:2 H a-(lf,ui),uiﬂsﬂiﬂ:TrMN:)\54_)\?, (1) {mi} 1=1
{uip =1

which is written in terms of the transfer matrig= (% 2% of ~ Where Qi={¢;,&=cosdj}, . and the fgrce-dependent
elementsv = g1 #ikitigrti+1 and eigenvalues function  E;(Q;, Q1) =e®(1—pu;) +e 5 iui(1—pitq)
+4me??45(0;— O, 1) mipmi+ 1, With Sthe Dirac delta func-

HiMi+1
Noi=i[1+5* (1—5)2+4as]. 2 ti_on. <p=FIco_i|/kBT, a_md 7<P:F_|henx/kE_;T are the_z dimen- _
01=2[ ( ) os] @ sionless elastic energies associated with the coiled and heli-

In order to identify the partition function with the trace of cal residues, respectively. Although it is possible to write a
MN, we assumed periodic boundary conditiops,,;=x,. formal expression of the partition function in terms of a mul-
Any errors incurred by chain-end effects will vanish in the tidimensional integral of a product of transfer matrices, such
limit of long chains. Since the system is one dimensional an@ form would be useless due to the coupling introduced by
the interactions are short ranged, even at the infinite-chai’® Diracé functions. Therefore we must resort to a combi-
limit (N—) a true thermodynamical phase transition oc-natorial approach for the evaluation2f . In addition to the
curs only foro=0, when the transfer matrix is not positive Unstretched-chain statistical weights, we have an elastic fac-
definite and the Perron-Frobenius theorem does not appher S(¢)=(1/4m)[§7d¢[1,dée*é=sinhgle for each
[46]. The sharpness of the crossover region is controlled bgoiled residue and a8(ny¢) factor for each uninterrupted
o, whereass is related to the temperature. However, therehelical sequence containingresidues. There are many de-
have been indications that the polypeptide-chain adsorptiogeneracies in the™distinct terms of the partition function,
to an interfacg47] or the introduction of long-ranged Cou- Wwhich can be rewritten as a sum,

lomb interactiong 48,49 may promote the helix-coil transi-

tion into a true critical phenomenon, even for finite N-1 S"S(nye)[¥n
The effect of an external applied force on the helix-coil ZFZSNS(NVQDHSN(@)E Cy H &}

transition is analyzed using a simple model first introduced K n=1 S'(¢)

by Nagai[50]. In fact, a mean-field treatment of this model (4)

was previously performed by Buhot and Halpef86]. As

dlscusged n Append|x B th_e present work represents aye first term of Eq(4) represents the statistical weight of
extension of their calculation, in which the partition function

. ) ) the pure-helix configuration, while the weight corresponding
is evaluated exactly and fluctuations are automatically take

) . g AKEEY the fully coiled state is given by the terks= 0 of the sum.
into account. Each uninterrupted helical sequence containing, o <\ overk=(K,,... ky_4) is restricted to all non-

n residues is replaced by a rod of length,gix, Wherel gy AU _ _ :

is the projection along the-helix axis of the distance per ?heegig\r/gtrlg;tﬁ?er values dfy (n=1,... N—1) subject to
residue. On the other hand, the coiled regions are replaced by

a freely jointed chairf21,22 with segments of bond length

l.oii- The ratio between the helical and coiled-bond lengths, N-1
Y= leix!! coil» 1S reStricted to the range 0 to 1. The effect of ngl (n+1)k,=<N, 5

the external applied forcE is taken into account by adding
to the Hamiltonian an elastic contributionF-(ry—rg)=
—F-=N ,(ri—ri_))=—F3N I, cos®;, wherer,_; repre- and
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FIG. 1. Phase diagram on t|$e<q> p|ane for the fu“y coopera- FIG. 2. Force-extension prOfiles in the infinite-chain limi (

tive case ¢=0) in the infinite-chain limit N—) and for several —%). for y=1, s=0.8, and several values of the cooperativity
values of the ratio between the helical and coiled bond lengths, Parametero. The plateau obtained resembles early experimental
Above the continuous lines, which represent the critical value givedneasurements of the melting of an ideal homogeneous fibril con-
by Eg. (9), we have an ordered rodlike-helix configuration,  Sisting of a parallel bundle of polypeptide chai#]. To allow a

whereas for smaller values sfthe chain is in a coiled conforma- better view of the crossover region for very small valuesrpthe
tion. inset displays a magnification of the plateau neighborhood. Notice

that the finitee force-extension profiles do not cross the-0 pla-
teau at its middle point, in contrast to a previous calculation by

" | Buhot and Halperin[36] for the case of an external imposed
N{N—1- = nky strain—see the discussion in Appendix B.
Ck= N=1 N—1 (6)
( N— > (n+ 1)kn) ] k! Serit=€ "*S(¢). 9
n=1 n=1

For finite values oN, the crossover region has a finite width,

is the number of distinct possible configurations containing¥hich is broader for smaller values ®. In Fig. 1 the
k,, uninterrupted helical regions of sipen=1, ... N—1.In  SX¢ phase diagram for the fully cooperative case<0) in
fact, the constrain{s) is automatically taken into account by the infinite-chain limitN— ¢ is presented for some values of

the combinatorial factorC,, because IN-3=N_I(n 7. For any value ofy<1, we obtain two transitions for a
+1)k,]'=0 for EN*iI.(n_i_ 1)k, >N certain range of the parameteinitially we observe a stress-
! ne .

induced stiffening of the chain, because the alignment of
coiled segments along the force direction favors the forma-
tion of the orderedr helix. The second transition, occurring
at strong deformations, involves the rupture of the stabilizing
hydrogen bonds of the helix. Only for y=1 is the critical
value(9) a monotonically decreasing function of the stress
nd the second hydrogen-bond breaking transition does not

cur. The fully cooperativer=0 force-elongation profile,
given by Eq.(8), is presented in Figs. 2 and 3, together with
the profiles for finiteo. It is worth mentioning that similar

For the fully cooperative caser&0), only the two pure-
state terms of the partition function surviv&:(oc=0)
=sNS(Ny¢)+SV(¢). Two physical quantities may be ob-
tained by differentiation of the logarithm of the partition
function, namely, the fraction of monomers in helical re-
gions, Oy=(1N)=N (u;)=(1N)d(InZ)/d(Ins), where
(---) denotes an average in the stress ensemble defined
Zg, and the normalized dimensionless average length of th
chain along the force directiom=(1/Nl;) =N ,(l; cosd;)
=(1/N)d(In Zp)/de, which is limited to the range 0 to 1. In
the limit of long chainsN—«, the transition becomes dis-

. 5
continuous, N-oo, v=1/2, s=0.8
4 T77 i 0.60 /,
Ng) 17t [0 for s<sg i T
= lim y=lim |1+ | = “ I [ 0331/
New o Newl S'S(Nye) 1 for s>sgy, ? | Uke=10" 050 f T 0 |
7 01 03 05 77| gy
1 P o=10"
= T T e =]
. /4—
r=1im[(1—6n)L(@)+ OnyL(NyQ)] 0
N 00 02 04 Y 06 08
r
_ L) for s<si (8) FIG. 3. Force-extension profiles in the infinite-chain limN (
y for s>sgi, —o), for y=1/2,s=0.8, and several values of the cooperativity

parameter. To allow a better view of the crossover region for very

small values ofo, the inset displays a magnification of the plateau
where L(¢) =cothe—1/¢ is the Langevin function, taking vicinity, showing that the finiter sigmoid profiles are not sym-
place at the critical value metrical about the crossing pointy(, ¢p).
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force-length behavior has been observed in early experiA. The equations of state, the Gibbs free energy per residue,
ments on the stretching of a parallel bundle of polypeptideg= —kgT limy_,.(1/N)InZz, and the force-extension rela-
chains[51]. tion are written in terms of the variables=1—6 andy=1

For the finite cooperative caser¢0), a closed expres- — 60—, where the mean fraction of helical monomer units
sion for the partition function can be obtained only in thefollowing coiled segments isnEIimN_,w(llN)EiN:l«l
infinite-chain limit (N—o)—see the derivation in Appendix — u;)uis1)=limy_..(1/N)d(In Zg)/d(In o),

B B oxy’sS ¢)S(ye)
X=Xy @) = R —ys el xS(g) —yse 7]’ (19

_ _ .9y | xSlg)—yse?
Y=Y (X,Y,p)=X+ 2?’4" XS(@)—yse 79| (11

InS(¢)+1 i f < 1

9 n (‘P) ny or s Scrity
T (12

X
vyo+Ins for s>scmy,

y=x 1 [[X*S(¢)—y?s*](1-X)

X
XL(@)+ ——+ — for s<sgi—
. O 26| xysSersre) Uy} Y s

X
vy for s>sgi )—/ ,

wheres,,;; is the unstretched critical propagation parameter, . 27¢p(1—e*274’p)

given by Eq.(9). € = —W[ o : (17)
In Figs. 2 and 3 we present some typical force-extension

profiles for finite values of the nucleation parameateiNote

the steep increase of the forcerat y related to the stiffen- 1-2e—\1—-4e 5 3 . 5

ing of the chain and the asymmetrical sigmoid shape in the Ple)= TZG“LZG +5e7+ 146"+ 42¢

vicinity of the =0 plateau. In Appendix B these exact re-

sults are compared with a mean-field approximation for the +132°+0(€), (18)

partition function[36], which incorrectly leads to écontinu-

ous second-order phase transition for finite where the stress value at the=0 plateau,, is given by

The asymptotic behavior about=0 is given by a slowly  the solution of Eq(9) for a givens, andW(z) is the princi-
convergent series, because the expansion paramadtde-  pa| solution of the LamberW function [52,53, which is
fined below has a logarithmic dependence onin leading  defined to be the multivalued inverse of the transcendental
order, we may show that the plateau crossifigsboth low-  equationz=wWe". Notice that, as we approach the fully co-
and high-force transitions when<0y<<1) occur at operative limit ¢—0), we obtaine—0, o/e—0 and the
plateau crossing, tends to the edge valug€(¢,) corre-
sponding to the pure coiled-state length, giving rise to a
highly asymmetric sigmoid form for smadt.

We may expand the force-extension relation in the vicin-
ity of the 0=0 plateau to obtain the asymptotic linear elas-

lim x,~1+ y(e), (14)

o—0

ticity law
(|T|T0yp~1+ Ple)+ Zerey (15 e
(p=qop+(r—l’p)a +O[(r_rp)2]v (19
P=¢p
g
lim rp~L(@p) +[L(@p) = y]p(e) + 5—, (16)
o0 P P 267@,2) where the slope, in leading order abaut- 0, is given by
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. do oA, tion proportional too*’2. Also, the mean-field approach pre-
lim - = AT oAl (200 dicts a second-order phase transition, which is prohibited for
o—0 = € AT 0A3 . . . .

¢=¢p this one-dimensional system for finiie Furthermore, we

. - B 5rq 9 also showed that it is not possible to develop a perturbation
with coefficients A;=[1+¢(e) |{1—e[1+ (€)1}, A, theory about the mean-field solution, because fluctuations

_ 8 2 _
_23"09[1+ Y(e)] [[’z(‘pp)_ 1%, and A3=1-2L(¢p)/¢y  play a fundamental role and cannot be disregarded.
—L(¢p). Since o/e“—0 aso—0, the asymptotic slope

(20) vanishes logarithmically as oW?(1/o)~o[In o The authors acknowledge fruitful discussions with Ar-
+In|In o]]%, which is distinct from the mean-field power-law naud Buhot and Avi Halperin. M.N.T. acknowledges the fi-
dependence*? given by Eq.(B11). nancial support of the Brazilian agency CNPq, Conselho Na-

In Appendix B we show that a previous calculation by cional de Desenvolvimento Ciefito e Tecnolgico. This
Buhot and Halperii36] corresponds indeed to a mean-field research was also partially supported by the MRL Program
approximation for the partition function. However, we of the National Science Foundation under Grant Nos. DMR-
should mention that a mean-field approach is inappropriat€6-32716 and DMR-96-24091.
for this system, because it is not possible to perform a per-

turbation theory about the mean-field solution. Due to the oppeNDIX A:  EXACT PARTITION EUNCTION IN THE

low dimensionality of the system, this is not at all surprising. INFINITE-CHAIN LIMIT  (N— )
This impossibility is due to the fact that the higher-order o N
moments of the block-size distributighy) scale likeN”"*. We want to maximize the general teup of the partition
Indeed, in the infinite-chain limit, the ratio function (4), Ze=s"S(Ny¢) + =z, or more conveniently
its logarithm,
N—-1
1 1 14 H 14 .
lim =z (kp=lim < >k lim nz=NInS(¢)+1+InN
N— oo N— o0 n=1 N—soe
0_(1_0_77)}11 v (V) N-1 N-1
=—- " =1 . +| N=-1- nky |INf N—1— nk
2y¢ JZO (=1 J ngl N nzl "

xLi [—(1_9_ s VeZJW} [V S T 5 (n+1)k}
I (1=0)S(e) = n “~ n
D . . os"S(nye)
is finite and can be expressed in terms of thie polyloga- - ngl KnInk,+ nzl knIn W} (A1)

rithmic function[54] Li,(2)==]_,2)/j".

In summary, we have provided an exact treatment of thgyhere the Stirling approximation E~zInz—z was em-
stress-induced-helix—coil transition in homopolypeptides, pjoyed to obtain Eq(Al). The stationary-point equations
in which the elastic degrees of freedom are analyzed in thg |n 7 /9k =0 yield the distribution
framework of the freely jointed chain model. This statistical-
mechanical standpoint, besides being straightforward, has

N—1 n+1
the advantage of enabling an accurate control over the ap- n
proximations. The force-extension profiles obtained are N_nz::l (N+1kn | os'S(nye)
qualitatively distinct from elasticity laws derived in the k,= N=T o , (A2)
mean-field approximatiofi36]—see the discussion in Ap- _a_ 2 K n
. . . . . N—-1 nk,| S'(¢)
pendix B. In particular, the sigmoid form in the crossover n=1

region has a highly asymmetric form and its asymptotic
slope vanishes logarithmically, proportional te{Ino  which, in turn, leads to the self-consistent equations for the
+In|In a]]?, in contrast to the mean-field power-law predic- intensive self-averaged variables,

i 3“5 i 1d(nZe) a(1—6)(1— 0— 7)%sS¢)S(¢)
k= IM N & TN dins) (1 0)S()— (1 0- 7)s@I(1- 0)S(¢) —(1—0- pse 7]’
(A3)
o\t 1d(InZp) o(1—0-7) [(1-0)S(e)—(1—6—5)se 7*
7=l lm 52 k=M S Gine) ~ ayve | G- 0Se-(A-0-nse” | A9
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In the unstretched-chain limitg(—0), we regain, as ex- 0.8 ]
pected, the unperturbed-chain Zimm-Bragg res[4fS| 6, N-oo,y=1, 5=0.8 Vi
:()\0_1)/(2)\0_1_5), 7]0:()\0_1)()\0_3)/[)\0(2)\0_1 0.6 5 ////
—=9)], Nog=(1—60)/(1— 69— 71p), Where )\, is the largest @) /e /_,,_._,.,;—-——'-’—75-—-—-—-7(,-
eigenvalue of the unstretched-chain transfer matijpgiven ®oq 1% ’
by Eq. (2). [ ?,
To perform the numerical calculations for the stretched 02| /77 6=0
chain (p+#0), it is convenient to introduce the variables /4 N o=10:j (exact)
=1-6 and y=1—60—17, in terms of which the self- 00 VT T 0=10 (mean-field)
consistent equations and the Gibbs free energy per residue, 00 0z 04 06 08 10
g=—Ilimy_.(kgT/N)InZ:, can be rewritten as Eq§10)— r

(12). The calculation of the average chain length along g 4. comparison between the exact and the mean-field force-

the force direction, r=—(1kgT)dg/dels,=L(¢)  extension profiles in the infinite-chain limitN— ), for y=1, s

+ (1) dx/de—(1ly)dy/de for s<syx/y, orr=vy for s 0.8, ander=10"1. We chose a large value ofto allow a better

>sgitX/y, requires the derivatives of the parametric forms,comparison between the two approaches; the same features are

dx/de=[dX/de+d(X,Y)d(y,e)]/A,  dylde=[dY/d¢  present for very small values . We indicated in the figure the

—d(X,Y)a(x,@)]/A, A=1-9XIox—=adYIlay+d(X,Y)/ exact ¢=rp) and the mean-fieldr&T,) plateau crossings, the

d(x,y). After tedious and lengthy algebraic manipulations,asymptotico—0 crossing value(¢,), the plateau forcep,, and

we are led to the force-extension relatic8). the mean-field critical force,. The mean-field approximation pre-

dicts a second-order phase transitionpat ¢, between a partially

and a pure helical state. The partition-function exact treatment leads

to a smooth crossover between these two states and there is no true

thermodynamical phase transition. The smooth crossover is related
We now show that the approach followed by Buhot andto the steep increase in the force close toy.

Halperin[36] corresponds indeed to a mean-field approxima-

tion for the partition function. Two contributions to the gen- fixed-force(stres ensemble. Minimization of the mean-field

eral termz, of the partition functiofA1) can not be written ~Gibbs free energyg with respect to# and » leads to the

in terms of the intensive variablesand 7. In a mean-field mean-field equations of state,

approach, they are approximated by

APPENDIX B: MEAN-FIELD APPROXIMATION
FOR THE PARTITION FUNCTION

(1-0)(0—n)S(@)=0s(1— 60— n)exd yeL(Oyeln)],
N—1 (B6)
>, knInk,—N7In(N7), (B1)
" 72 extl (0yel m) L(Oyel )]

5 =0(60—n)(1—0—n)S(0yeln). B7
E k,InS(nye)—N»lIn S( 0%) ] (B2) o 7)( 7)S(6yel7) (B7)
n=1

In fact, the stress-ensemb(fixed-force Gibbs elastic free

Note that, by assuming a mean-field approximation for theEN€r9Y Jelast COrresponds to the Legendre transform of the
size of the helical blocks, we need to add to the entropic ternjtrain-ensembléfixed-length Helmholtz elastic free energy
a contribution (1K)In(’}) to account for their polydisper- feiast considered by Buhot and HalperifB6], feps(r)
sity. The mean-field Gibbs free energy per monorige;) =Geiast ¢(r) ]+ kgTro(r). However, because the elastic-
=U—TSmix" Jeias{ ®), is split into three terms ity law r=-—(1kgT)dG/dels ,=—(1KsT) MGeiasi = (1
bt Jelast ¥/ ' —0)L(@)+ 0yL(6yel ) cannot, in general, be analytically
inverted to givep=¢(r), it is not possible to perform an
——=—7nlno—40Ins, (B3)  exact analysis of the mean-field equations in the strain en-
keT semble. In particular, we will show later that, contrary to
Buhot and Halperin’s calculations, the mean-field force-
n extension profiles do not have an inflection point at the
1-6 middle point of the plateau. At this point we should remark
that, although Buhot and Halperin obtained their plateau
1-60-9 within the s,,;;,=0 approximation, this assumption becomes
_, (B4) . mix— < T ’ . T
1-6 exactin the c— 0 limit, as can be seen by taking this limit in
the mean-field equations of state. Therefore,she=0 pla-
Jelast Oy teau obtained by Buhot and Halperin, apart from the weak-
KaT —(1-0)InS(e)—7nIn S(T) (BS)  force expansion, corresponds to the exaet0 plateau. In
particular, their plateau forcg,~3—3v1+35Ins can be
where u—Tsx corresponds to the unstretched-chain freeobtained by a second-order expansion of the critical propa-
energy(u is the internal energy ansl, is the mixing en-  gation parametesin the fully cooperative ¢§— 0) limit, Eq.
tropy) and geasl @) represents the elastic free energy in the(9).

Smix

kg

0_
— (- n)|n7”+n|ng+n|n

+(1-6—17n)ln
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HELIX-COIL TRANSITION IN HOMOPOLYPEPTIDES . . .

Unlike the strain ensemble, in the stress ensemble it is Y
possible to perform an exact analysis of the mean-field equa-
tions. In particular, one may show that the crossings with the

o=0 plateaus occur at

) Ve
(lrlino 0~ 5 (B8)
(!’iLnO np% E, (Bg)
. G
im T~ Llop) +[y—Ligg] 5, (B10)

o—0

where the mean-field expansion paraméterec/(yep).
An analogous asymptotic linear elasticity law lik&9) can
be obtained at the mean-field level, replacing by T,
where the mean-field slope, in leading order ab®ut0, is
given by

24f¢

L, LT

. de
lim —

i (B11)
¢

o—0

This power-law dependencet?) of the mean-field slope is
in contrast with the logarithmically vanishing slofi0) pro-
portional too[In o+In|In o]

A point overlooked by Buhot and Halperi6] is that the
mean-field approximation incorrectly predictgcntinuou$
second-order phase transition for finitewhich is prohibited
for this one-dimensional systefd6]. This can be seen in

PHYSICAL REVIEW E 63 021909

FIG. 5. Mean-fieldsX ¢ phase diagram in the infinite-chain
limit (N—), for y=1 and 1/2,5=0.8, and finite cooperativity
(o#0). These curves, for finite, correspond to the boundagy
of the helical region, given by EqB12), and represent the loci of
the (continuou$ second-order phase transition. For a fixed external
force ¢, the transition is shifted to higher values ©f

lim,_o d<p/dr|¢:<pooc02, at a critical forcep satisfying ex-
actly (for all values ofo) the condition

eo
)

s=e 7%S(¢o) 2ye0

(B12)

Inthe c—0 limit, ¢o— ¢,,. A noteworthy feature is that the
mean-field force-extension profile does not have an inflection
point, its derivative for <y being a monotonically decreas-
ing function of the reduced length This is in contrast with
the exact partition-function result, which predicts a steep in-
crease in the force close to=. In Fig. 5 we present the
mean-fieldsX ¢ phase diagram for finite cooperativityr (

Fig. 4, where the mean-field and the exact partition-function# 0). For a given external force, the o=0 first-order(dis-
profiles are compared. The mean-field force profile meetgontinuou$ transition is shifted to higher values sfand

r=v with vanishing slope (in the o—0 Ilimit)

becomes second ordéontinuous.
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